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LETTER TO THE EDITOR 

Random walks in media with constrained disorder 

V E Kravtsov, I V Lerner and V I Yudson 
Institute of Spectroscopy, Academy of Sciences of USSR, 142092, Troitsk, Moscow obl, 
USSR 

Received 1 5  April 1985 

Abstract. We have considered in the framework of the field-theoretical approach the 
asymptotics of random walks in media with quenched disorder which is described by drift 
velocity field V ( x )  subjected to various constraints. The disorder has proved to be relevant 
in d < 2 dimensions leading (at d = 2) to superdiffusion behaviour for the solenoidal random 
drift (aV,/ax,  = 0) and to subdiffusion behaviour for the potential random drifts (av,/ax, - 
aylax, =o) .  

A well known problem of random walks in media with a quenched disorder is defined 
by the Langevin equation 

X ( t ) =  V ( x ) + q ( t ) .  ( 1 )  

Here q(t)  is a Gaussian white noise of zero average having the following correlation 
function 

( d h , ( t ’ ) )  =2DoS,,W - [‘I, (2) 

where i, j are the vector indices in d-dimensional space, Do is the bare diffusion 
constant. The equivalent description of the problem ( l ) ,  (2) is given by the Fokker- 
Planck equation for the probability distribution P ( x ,  t )  of the random walker 

[ a l a r  -a,(D,a,- V , ) ] P ( X ,  t )  =o.  ( 3 )  

In this letter we consider three models for the disorder described by the random 
drifts V ( x ) .  For all the models V ( x )  is supposed to be the quenched Gaussian random 
field of zero average with the correlation function given by 

( V t ( x )  V / ( x ’ ) ) =  Y o F ; , ( x - x ’ )  (4) 

Model I ,  isotropic disorder, Fl,(k) = 6, ( 5 a )  

Model 11, transverse disorder, F,,(k)  = 6, - klk , /k2  ( 5 b )  

Model 111, longitudinal disorder, F, , (k)  = k , k , / k 2 .  ( 5 c )  

where the Fourier transforms of F , , ( x - x ’ )  are given as follows: 

Model I corresponds to the unconstrained random drift field V ( x ) .  The models 11, 
I11 correspond to the random vector fields V ( x )  being subject to the following con- 
straints: 

Model 11, solenoidal field: a , V , ( x )  = 0 ( 6 b )  

Model 111, potential field: d , v , ( X ) - d , v , ( X )  = o .  ( 6 c )  
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In the model 111, the random field V may evidently be considred as a gradient of a 
random potential, V , ( x )  = d,@(x). 

The recent field-theoretical analysis of the model I (Luck 1983, Peliti 1984, Fisher 
1984, Cardy 1984) has shown the weak disorder to be relevant in d S 2 dimensions. 
At the upper critical dimensionality d = 2 the disorder (4) leads to logarithmic correc- 
tions to the diffusion coefficient in the long-time limit (Fisher 1984): 

We will show the diffusion coefficient in both models, I1 and 111, to be much more 
affected (at d s 2) with a weak disorder than in the model I. For d = 2 we will obtain 
in the long-time limit: 

Before treating the models I1 and 111 let us discuss what physics they describe. 
The most straightforward realisation of the models ( 5 )  is a random motion of a traveller 
in a liquid with stationary random streams. The travelling in an incompressible liquid 
(‘a bottle in an  ocean’) corresponds evidently to the model I1 (6b) .  Travelling in a 
compressible liquid with random non-circulatory flows corresponds to model 111 (6c). 

Another physical problem described in a large-distance limit by the Fokker-Planck 
equation (3) is the general hopping problem on an  irregular lattice: 

P, = c ( W,PY - W,P,). 
B 

Both the continuum (3) and  the lattice (10) problems turn out to have the same critical 
properties because they differ only by irrelevant terms containing the derivatives of 
higher orders (Derrida and  Luck 1983, Luck 1983). Then one can express the parameters 
of the Fokker-Planck equation (3) in terms of the random hopping rates W, as follows 

The Gaussian fluctations of the drift field (1 1) result in the non-trivial critical behaviour 
in d s 2 dimensions while both non-Gaussian corrections to the correlation function 
(4) and the random variations of D ( x )  are irrelevant. In a regular lattice subjected to 
no external fields the drift velocity (1  1) equals zero. For the irregularities caused by 
the presence of charged impurities when changes in hopping rates are proportional to 
random electric fields the hopping problem turns out to be described by the model 
111. The model I1 may arise if the irregularities are caused by the presence of 
dislocations (vortices). 

To derive the announced results (8) and  (9) we begin with the Fokker-Planck 
equation (3). All the physical properties of random walks are governed with the 
probability density that a walker starting at  the origin reaches the point x at time t. 
This probability density is given by the Green function G(x, t )  of the operator on the 
LHS of the equation (9).  In order to perform an  averaging of the Green function over 
the random field V ( x )  it is convenient to represent the Fourier transform G(x, w )  as 
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a functional integral over conjugated fields cp, Cp as follows: 

9Cp 9cp cp(x)Cp(O) exp (is) 

S = Cp(x)[iw -a,(D,d, - Vi(x))]cp(x) ddx 1 
with 2 being a normalisation factor. The averaging over { V ( x ) }  is performed with 
the help of a conventional replica trick and results in substituting the action (14) by 
the following one 

S = Cp,(x)[iw - Daf]cp,(x) 

+ t i ?  F,j (x  - x’)cp, (x)a,Cp, (x)cpp(x’ )djCpp(x’ )  ddx ddx‘ (15)  

f 
f 

where the replica (Greek) indices run from 1 to N and N must be put equal to zero 
in the final results. The equivalence in a perturbative sense of the constructed field 
theory and the initial problem (9) may be directly verified by a proper expansion in 
powers of y (note that for d = 2 all the diagrams diverge as powers of In t ) .  Thus the 
initial problem is represented in a form allowing a rigorous renormalisation group 
( RG) treatment. 

Usual power counting for the action (15 )  shows the disorder parameter y to be 
relevant in d s 2 dimensions for all the models (5). Following the RG scheme commonly 
used for analysis of critical phenomena (Ma 1976) we integrate over fast Fourier 
components of fields cp,, (Pa with momenta k, Ako < k < ko, where A is a scaling factor 
(0 < A < l ) ,  k,  is an ultraviolet cutoff (which is determined by a lattice spacing for the 
associated hopping problem or by a required regularisation of the correlator (4) for 
the continuous problem). The RG equations for both diffusion coefficient D and 
disorder y are derived as usual by means of a loop expansion coinciding with an 
expansion in powers of the dimensionless (for d = 2) charge 

g = y / ( 4 r D 2 ) .  (16) 

The considered problem of the weak disorder corresponds to a small value of the 
parameter: go<< 1 .  

In d = 2 dimensions we obtain up to two-loop order the following RG equations 
( N  = 0): 

d In D / d t  = ag - 2( 1 - cr2)g’ 

d l n g / d ( =  - (1+a)g+2(1-cr2)g2  

where ( = In A - ‘  and 

0, model I 

- 1 ,  model 111. 
f f = [  1 ,  model I1 (19) 

The non-trivial renormalisation of frequency w is obviously absent as a result of the 
probability conservation law. On solving the equations (17) ,  (18) we obtain D ( 5 )  as 
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follows: 

model I = Do exPE-2g;5/(1+ goo1 

model I1 D ( 0  = Do(l+2goo”2 

model 111 D ( 5 )  = Do exp(-got). (20) 

Here as usual 6 must be put equal to In( D k ; / w ) ” ’ a  In t ’” .  For go In t >> 1 we therefore 
come to the announced results (8), (9) as well as to the expression (7 )  for the 
model I. 

For d = 2 - E one should add E to the RHS of the equation (18). It makes the fixed 
point g* = E / (  1 + a )  to arise in the models I and I1 thus resulting in universal exponents 
for diffusion: 

model I: D K  t-‘* 

model 11: Dcc (‘I4. 

With the accuracy up to two loops one fails to find the fixed point in the model 111. 
Note that in d = 2 dimensions the small RG charge decreases under RG transforma- 

tions (‘zero-charge’ situation) for both models I and I1 so that the theory proves to be 
asymptotically exact. For the model 111 the renormalisation of the charge g vanishes 
up to two-loop order. As the straightforward calculations in the three-loop order 
seem to be unreaslistic the problem of g ( 5 )  dependence remains undecided for 
model 111. 

Now we suggest a simple interpretation of drastic changes in the asymptotics of 
the random walks affected by the quenched vector disorder with the constraints (6). 
Figure 1 represents possible realisation of the random drifts V ( x ) .  The ballistic motion 
of a walker along the drift lines is perturbed by the strong random ‘wind’ q ( t )  (1) 
which blows away the walker from one drift line to another. In model 11, the solenoidal 
field V ( x )  has no sinks and sources (figure l ( b ) ) .  Then the clue to the superdiffusion 
behaviour (see equation (8)) lies in the remnants of the ballistic motion along drift 
lines. On the contrary, in the model 111 the random field V ( x )  is potential so that it 
is characterised by a set of sources and sinks (figure l (c)) .  In the absence of the 
random wind ?,I ( t )  the sinks act as supertraps. The trapping turns out to dominate the 

l b l  ( c  I 

Figure 1. Possible realisations for the random drifts. ( a )  Unconstrained drifts (model I ) ,  
( b )  solenoidal drifts (model I I ) ,  ( c )  potential drifts (model 111). 

The line r (figure l ( a ) )  which allows a walker to leave a trap does not exist in model 
111 because of non-zero circulation at the dotted contour. 
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tendency to ballistic motion thus leading to the subdiffusion behaviour (9) even in the 
presence of the wind. In model I (figure l (a) ) ,  the sinks are not so ‘dangerous’ for 
diffusion as in model I11 due to existence of drift lines such as the line r (figure l ( a ) )  
which help the walker leaving a trap. As a result the correction to the diffusion law 
proves to be small (see equation (7)) .  

We are grateful to V M Agranovich and D E Khmelnitskii for fruitful discussions on 
the present results. 
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